skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Milbrandt, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Secondary ice production (SIP) is an important physicalphenomenon that results in an increase in the ice particle concentration and cantherefore have a significant impact on the evolution of clouds. In thisstudy, idealized simulations of a mesoscale convective system (MCS) wereconducted using a high-resolution (250 m horizontal grid spacing) mesoscalemodel and a detailed bulk microphysics scheme in order to examine theimpacts of SIP on the microphysics and dynamics of a simulated tropical MCS.The simulations were compared to airborne in situ and remote sensing observationscollected during the “High Altitude Ice Crystals – High Ice Water Content”(HAIC-HIWC) field campaign in 2015. It was found that the observed high icenumber concentration can only be simulated by models that include SIPprocesses. The inclusion of SIP processes in the microphysics scheme is crucialfor the production and maintenance of the high ice water content observed intropical convection. It was shown that SIP can enhance the strength of theexisting convective updrafts and result in the initiation of new updraftsabove the melting layer. Agreement between the simulations and observationshighlights the impacts of SIP on the maintenance of tropical MCSs in natureand the importance of including SIP parameterizations in models. 
    more » « less
  2. Abstract. High ice water content (HIWC) regions in tropical deep convective clouds, composed of high concentrations of small ice crystals, were not reproduced by Weather Research and Forecasting (WRF) model simulations at 1 km horizontal grid spacing using four different bulk microphysics schemes (i.e., the WRF single‐moment 6‐class microphysics scheme (WSM6), the Morrison scheme and the Predicted Particle Properties (P3) scheme with one- and two-ice options) for conditions encountered during the High Altitude Ice Crystals (HAIC) and HIWC experiment. Instead, overestimates of radar reflectivity and underestimates of ice number concentrations were realized. To explore formation mechanisms for large numbers of small ice crystals in tropical convection, a series of quasi-idealized WRF simulations varying the model resolution, aerosol profile, and representation of secondary ice production (SIP) processes are conducted based on an observed radiosonde released at Cayenne during the HAIC-HIWC field campaign. The P3 two-ice category configuration, which has two “free” ice categories to represent all ice-phase hydrometeors, is used. Regardless of the horizontal grid spacing or aerosol profile used, without including SIP processes the model produces total ice number concentrations about 2 orders of magnitude less than observed at −10 ∘C and about an order of magnitude less than observed at −30 ∘C but slightly overestimates the total ice number concentrations at −45 ∘C. Three simulations including one of three SIP mechanisms separately (i.e., the Hallett–Mossop mechanism, fragmentation during ice–ice collisions, and shattering of freezing droplets) also do not replicate observed HIWCs, with the results of the simulation including shattering of freezing droplets most closely resembling the observations. The simulation including all three SIP processes produces HIWC regions at all temperature levels, remarkably consistent with the observations in terms of ice number concentrations and radar reflectivity, which is not replicated using the original P3 two-ice category configuration. This simulation shows that primary ice production plays a key role in generating HIWC regions at temperatures <-40 ∘C, shattering of freezing droplets dominates ice particle production in HIWC regions at temperatures between −15 and 0 ∘C during the early stage of convection, and fragmentation during ice–ice collisions dominates at temperatures between −15 and 0 ∘C during the later stage of convection and at temperatures between −40 and −20 ∘C over the whole convection period. This study confirms the dominant role of SIP processes in the formation of numerous small crystals in HIWC regions. 
    more » « less
  3. Abstract. Regions with high ice water content (HIWC), composed of mainly small ice crystals, frequently occur over convective clouds in the tropics. Such regions can have median mass diameters (MMDs) <300 µm and equivalent radar reflectivities <20 dBZ. To explore formation mechanisms for these HIWCs, high-resolution simulations of tropical convective clouds observed on 26 May 2015 during the High Altitude Ice Crystals – High Ice Water Content (HAIC-HIWC) international field campaign based out of Cayenne, French Guiana, are conducted using the Weather Research and Forecasting (WRF) model with four different bulk microphysics schemes: the WRF single‐moment 6‐class microphysics scheme (WSM6), the Morrison scheme, and the Predicted Particle Properties (P3) scheme with one- and two-ice options. The simulations are evaluated against data from airborne radar and multiple cloud microphysics probes installed on the French Falcon 20 and Canadian National Research Council (NRC) Convair 580 sampling clouds at different heights. WRF simulations with different microphysics schemes generally reproduce the vertical profiles of temperature, dew-point temperature, and winds during this event compared with radiosonde data, and the coverage and evolution of this tropical convective system compared to satellite retrievals. All of the simulations overestimate the intensity and spatial extent of radar reflectivity by over 30 % above the melting layer compared to the airborne X-band radar reflectivity data. They also miss the peak of the observed ice number distribution function for 0.1<1 mm. Even though the P3 scheme has a very different approach representing ice, it does not produce greatly different total condensed water content or better comparison to other observations in this tropical convective system. Mixed-phase microphysical processes at −10 ∘C are associated with the overprediction of liquid water content in the simulations with the Morrison and P3 schemes. The ice water content at −10 ∘C increases mainly due to the collection of liquid water by ice particles, which does not increase ice particle number but increases the mass/size of ice particles and contributes to greater simulated radar reflectivity. 
    more » « less
  4. Abstract In the atmosphere,microphysicsrefers to the microscale processes that affect cloud and precipitation particles and is a key linkage among the various components of Earth's atmospheric water and energy cycles. The representation of microphysical processes in models continues to pose a major challenge leading to uncertainty in numerical weather forecasts and climate simulations. In this paper, the problem of treating microphysics in models is divided into two parts: (i) how to represent the population of cloud and precipitation particles, given the impossibility of simulating all particles individually within a cloud, and (ii) uncertainties in the microphysical process rates owing to fundamental gaps in knowledge of cloud physics. The recently developed Lagrangian particle‐based method is advocated as a way to address several conceptual and practical challenges of representing particle populations using traditional bulk and bin microphysics parameterization schemes. For addressing critical gaps in cloud physics knowledge, sustained investment for observational advances from laboratory experiments, new probe development, and next‐generation instruments in space is needed. Greater emphasis on laboratory work, which has apparently declined over the past several decades relative to other areas of cloud physics research, is argued to be an essential ingredient for improving process‐level understanding. More systematic use of natural cloud and precipitation observations to constrain microphysics schemes is also advocated. Because it is generally difficult to quantify individual microphysical process rates from these observations directly, this presents an inverse problem that can be viewed from the standpoint of Bayesian statistics. Following this idea, a probabilistic framework is proposed that combines elements from statistical and physical modeling. Besides providing rigorous constraint of schemes, there is an added benefit of quantifying uncertainty systematically. Finally, a broader hierarchical approach is proposed to accelerate improvements in microphysics schemes, leveraging the advances described in this paper related to process modeling (using Lagrangian particle‐based schemes), laboratory experimentation, cloud and precipitation observations, and statistical methods. 
    more » « less